Machine Learning Meetup @ Google Bangalore

Jan 28, 08:30 PM PST
  • Bangalore (India) AICamp
  • 273 RSVP

Welcome to our in-person machine learning meetup in Bangalore, in collaboration with Google Developers. Join us for deep dive tech talks on AI/ML/Data, networking with speakers&peers developers, and win lucky draw prizes.

Agenda (IST):
* 10:00am~10:20am: Checkin, Snacks and Networking
* 10:20am~10:30am: Welcome/community update/Sponsor intro
* 10:30am~12:00pm: Tech talks
* 12:00pm~12:30pm: Open discussion, Lucky draw and closing

Tech Talk 1: End-to-end Computer Vision models using TensorFlow
Speaker: Nitin Tiwari, Google GDE and Software Engineer @Larsen & Toubro Infotech
Abstract: In this session, we will discuss building end-to-end object detection models and deploying them on mobile devices using TensorFlow Lite. Attendees will learn:
* Dataset preparation and labeling
* Training a custom object detection model
* Deploying the model on an Android application

Tech Talk 2: Practitioners guide to MLOps - A framework for continuous delivery and automation of machine learning
Speaker: Girish Patil, Cloud Engineer, AI @Google
Abstract: This session outlines an MLOps concepts and framework that defines core processes and technical capabilities in MLOps. This will help mature MLOps practices for building and operationalizing ML systems and can help teams improve collaboration, improve the reliability and scalability of ML systems, and shorten development cycle times. These benefits in turn drive innovation and help gain overall business value from investments in ML. This session is intended for technology leaders and enterprise architects who want to understand MLOps. It’s also for teams who want details about what MLOps looks like in practice. The session assumes that readers are familiar with basic machine learning concepts and with development and deployment practices such as CI/CD.
The session will be two parts. The first part, an overview of the MLOps lifecycle, is for all readers. It introduces MLOps processes and capabilities and why they’re important for successful adoption of ML-based systems. The second part is a deep dive on the MLOps processes and capabilities. This part is to understand the concrete details of tasks like running a continuous training pipeline, deploying a model, and monitoring predictive performance of an ML model.

Tech Talk 3: Machine Learning from Few Examples
Speaker: Shweta Bhatt, Google GDE and Senior Applied Scientist @Jupiter
Abstract: Traditional ML systems are highly dependent on large amounts of labelled data for the purpose of model training and their maintenance. However, in practice there is a significant cost associated with data collection, annotation and validation and not all businesses can afford that. Few-shot learning approaches can help address this problem and this session will cover an overview of the same.

Google RMZ Infinity
No. 3, Old Madras Rd, Sadanandanagar, Bennigana Halli, Bengaluru. Google Map
How to find us: Opposite Gopalan Mall
COVID-19 safety: Attendees are required to be fully vaccinated and bring vaccination proof.

Lucky draw
We will raffle winners for prizes during the event. To enter the lucky draw, please complete one of the two steps (or both):

  • Twitter the event with hashtag #aicampbangalore and tag @aicampai. For example:
  • #aicampbangalore Join the monthly ML meetup in Bangalore by @aicampai to learn AI, ML, Data and Cloud technology with tech leads and industry experts. Free join in person:
  • Comment the post on LinkedIn: LinkedIn Post
  • Community on Slack
    - Event chat: chat and connect with speakers and attendees
    - Sharing blogs, events, job openings, projects collaborations
    Join Slack

    Girish Patil(Google)

    The event ended.
    Watch Recording
    *Recordings hosted on Youtube, click the link will open the Youtube page.
    Contact Organizer