Most search and recommender systems deal with large amounts of natural language data, hence an effective system requires a deep understanding of text semantics. Recently, deep learning based natural language processing (deep NLP) models have generated promising results.
In this talk, we will introduce DeText, a state-of-the-art open source NLP framework for text understanding. DeText is a flexible framework with BERT/CNN/LSTM encoders for text data processing, designed for efficient industry use cases. It has been applied in many productions at LinkedIn, such as search ranking, query auto completion, query intent prediction, etc. We will discuss:
Overview on DeText
Technical architect and design of DeText
Illustrate how neural ranking is designed and developed in DeText
Live demo
More on DeText: Open Sourcing DeText
Xiaowei Liu, Weiwei Guo, Sida Wang, Huiji Gao, from LinkedIn NLP Team